首页> 外文OA文献 >Ligand Binding to the Voltage-Gated Kv1.5 Potassium Channel in the Open State—Docking and Computer Simulations of a Homology Model☆
【2h】

Ligand Binding to the Voltage-Gated Kv1.5 Potassium Channel in the Open State—Docking and Computer Simulations of a Homology Model☆

机译:在开放状态下配体与电压门控Kv1.5钾离子通道的结合-同源模型的对接和计算机模拟☆

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The binding of blockers to the human voltage-gated Kv1.5 potassium ion channel is investigated using a three-step procedure consisting of homology modeling, automated docking, and binding free energy calculations from molecular dynamics simulations, in combination with the linear interaction energy method. A reliable homology model of Kv1.5 is constructed using the recently published crystal structure of the Kv1.2 channel as a template. This model is expected to be significantly more accurate than earlier ones based on less similar templates. Using the three-dimensional homology model, a series of blockers with known affinities are docked into the cavity of the ion channel and their free energies of binding are calculated. The predicted binding free energies are in very good agreement with experimental data and the binding is predicted to be mainly achieved through nonpolar interactions, whereas the relatively small differences in the polar contribution determine the specificity. Apart from confirming the importance of residues V505, I508, V512, and V516 for ligand binding in the cavity, the results also show that A509 and P513 contribute significantly to the nonpolar binding interactions. Furthermore, we find that pharmacophore models based only on optimized free ligand conformations may not necessarily capture the geometric features of ligands bound to the channel cavity. The calculations herein give a detailed structural and energetic picture of blocker binding to Kv1.5 and this model should thus be useful for further ligand design efforts.
机译:使用三步法研究阻断剂与人电压门控Kv1.5钾离子通道的结合,该步骤由同源性建模,自动对接和结合分子动力学模拟计算的结合自由能以及线性相互作用能法组成。使用最近发布的Kv1.2通道的晶体结构作为模板,构建了可靠的Kv1.5同源模型。预计该模型将比基于较少相似模板的早期模型准确得多。使用三维同源性模型,将一系列具有已知亲和力的阻滞剂停靠在离子通道的腔中,并计算它们的结合自由能。预测的结合自由能与实验数据非常吻合,结合预计主要通过非极性相互作用实现,而极性贡献中相对较小的差异决定了特异性。除了证实残基V505,I508,V512和V516对于腔中配体结合的重要性外,结果还表明A509和P513显着促进了非极性结合相互作用。此外,我们发现仅基于优化的游离配体构象的药效团模型可能不一定捕获结合至通道腔的配体的几何特征。本文的计算给出了阻滞剂与Kv1.5结合的详细结构和能量图,因此该模型可用于进一步的配体设计工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号